The roles of the conserved pyrimidine bases in hammerhead ribozyme catalysis: evidence for a magnesium ion-binding site.

نویسندگان

  • J B Murray
  • C J Adams
  • J R Arnold
  • P G Stockley
چکیده

We report details of the synthesis and characterization of oligoribonucleotides containing 4-thiouridine or 2-pyrimidinone ribonucleoside (4HC). We have used these probes to examine the roles of the conserved pyrimidines in the central core of the hammerhead ribozyme. The effects on catalysis of singly-substituted hammerhead ribozyme and substrate strands were quantified in multiple-turnover reactions. Various effects were observed on kcat. and Km, with up to a 7-fold decrease and a 3-fold increase respectively. For substitutions with 4HC at positions 3 or 17, catalytic activity in single turnover reactions can be increased up to 8-fold equivalent to 40% of wild-type activity, by increasing the concentration of the Mg2+ cofactor, implying that these substitutions had a deleterious effect on Mg2+ binding. Calculations of the change in the apparent free energy of binding for variants at positions 3, 4 or 17 are each consistent with deletion of a single hydrogen-bond to an uncharged group in the ribozyme. The cytidine 5' to the scissile phosphate had not previously been thought to play a direct role in catalysis, however, removal of the exocyclic amino group decreased kcat. 4-fold. Recently, the crystal structures of a hammerhead ribozyme bound to either a non-cleavable 2'-deoxy substrate strand or a ribo-substrate strand have been reported. The kinetic properties of the variants described here are consistent with several key interactions seen in the crystals, in particular they provide experimental support for the assignment of the proposed catalytically active magnesium ion-binding site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helix P4 is a divalent metal ion binding site in the conserved core of the ribonuclease P ribozyme.

The ribonuclease P ribozyme (RNase P RNA), like other large ribozymes, requires magnesium ions for folding and catalytic function; however, specific sites of metal ion coordination in RNase P RNA are not well defined. To identify and characterize individual nucleotide functional groups in the RNase P ribozyme that participate in catalytic function, we employed self-cleaving ribozyme-substrate c...

متن کامل

A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate.

Evidence for a two-metal ion mechanism for cleavage of the HH16 hammerhead ribozyme is provided by monitoring the rate of cleavage of the RNA substrate as a function of La3+ concentration in the presence of a constant concentration of Mg2+. We show that a bell-shaped curve of cleavage activation is obtained as La3+ is added in micromolar concentrations in the presence of 8 mM Mg2+, with a maxim...

متن کامل

Importance in catalysis of a magnesium ion with very low affinity for a hammerhead ribozyme.

Available evidence suggests that Mg2+ ions are involved in reactions catalyzed by hammerhead ribozymes. However, the activity in the presence of exclusively monovalent ions led us to question whether divalent metal ions really function as catalysts when they are present. We investigated ribozyme activity in the presence of high levels of Mg2+ ions and the effects of Li+ ions in promoting ribozy...

متن کامل

Inhibition of the hammerhead ribozyme cleavage reaction by site-specific binding of Tb.

Terbium(III) [Tb(III)] was shown to inhibit the hammerhead ribozyme by competing with a single magnesium(II) ion. X-ray crystallography revealed that the Tb(III) ion binds to a site adjacent to an essential guanosine in the catalytic core of the ribozyme, approximately 10 angstroms from the cleavage site. Synthetic modifications near this binding site yielded an RNA substrate that was resistant...

متن کامل

Distinct reaction pathway promoted by non-divalent-metal cations in a tertiary stabilized hammerhead ribozyme.

Divalent ion sensitivity of hammerhead ribozymes is significantly reduced when the RNA structure includes appropriate tertiary stabilization. Therefore, we investigated the activity of the tertiary stabilized "RzB" hammerhead ribozyme in several nondivalent ions. Ribozyme RzB is active in spermidine and Na(+) alone, although the cleavage rates are reduced by more than 1,000-fold relative to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 311 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1995